Undergraduate Engineering Stats (as of Spring 2021)

<table>
<thead>
<tr>
<th></th>
<th>BE/BME</th>
<th>EE</th>
<th>ESE</th>
<th>ME</th>
</tr>
</thead>
<tbody>
<tr>
<td># Concentrators</td>
<td>90</td>
<td>35</td>
<td>37</td>
<td>78</td>
</tr>
<tr>
<td>% SB (vs. AB)</td>
<td>47%</td>
<td>86%</td>
<td>49%</td>
<td>87%</td>
</tr>
<tr>
<td>Median Class Size</td>
<td>19</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

Where have our recent graduates gone?

A few examples of where recent alumni are currently:

- Raytheon
- Medtronic
- Motorola Solutions
- Amazon
- Boeing
- Intuitive Surgical
- L.E.K. Consulting
- McKesson & Company
- Wayfair
- UAS

Where have our recent graduates gone?

Images courtesy of Alex Yang, BE SB '17

You’re invited to learn more!

Talk to our engineering advisors:

Electrical & Mechanical Engineering:
- Chris Lombardo
 lombardo@seas.harvard.edu

Bioengineering / Biomedical Engineering:
- Linsey Moyer
 lmoyer@wass.harvard.edu

Environmental Science & Engineering:
- Bryan Yoon
 byoon@wass.harvard.edu

Learn more on the web: www.seas.harvard.edu/engineering

Engineering @ SEAS

Engineers solve real-world problems by applying math and science for analysis and design.

Bioengineering
At the intersection of life and physical sciences biomedical engineers apply principles of engineering to understand and model living systems and design novel therapies to improve human health.

Degrees offered: Engineering Sciences SB (Bioengineering track); Biomedical Engineering AB

Electrical Engineering
Covers a range of research areas from devices to systems, offering ample research opportunities, both theoretical and experimental, at the forefront of the field and its interdisciplinary applications.

Degrees offered: Electrical Engineering SB; Engineering Sciences AB (Electrical and Computer Engineering Track)

Environmental Science and Engineering
To understand, predict, and respond to natural and human-induced environmental change, environmental scientists and engineers provide technical solutions and advance innovations in environmental measurements, modeling, and control.

Degrees offered: Engineering Sciences SB (Environmental Science and Engineering track); Environmental Science and Engineering AB

Mechanical Engineering
Mechanical engineering uses the principles of physics and materials science for the analysis and design of mechanical and thermal systems.

Degrees offered: Mechanical Engineering SB; Engineering Sciences AB (Mechanical and Materials Science and Engineering Track)
What problem do you want to solve?

Design and Validation of an Easily Machined CubeSat Structure
(ME SB)

JAZZMASTER: An Automated Accompaniment System for Jazz Music
(EE SB)

Evaluating cochlear implant mediated music perception with channel electrodogram mapping
(BME AB, Joint with Music)

Built a machine-learning based model to predict heavy metal contamination of groundwater at a national scale
(ESE SB)

Designed monocusp leaflets for right ventricular outflow tract reconstruction in infants
(BE SB)

Frequently asked questions

• Where do I start?
 • Industry internships are available and can be found by attending SEAS career fairs or talking to industry recruiters.
 • Join a SEAS club (HCES, EWB, HURC, etc…)
 • Take one of our introductory courses (see below)
 • Talk to a concentration advisor (ADUS) in any of our fields to chat about your options

• What kinds of internships can I do?
 • Research internships are available through SEAS and national labs. See above.
 • Industry internships are available and can be found by attending SEAS career fairs or talking to industry recruiters.

• How can I get involved in research?
 • Term-time: SEAS labs welcome undergraduates to work on research projects during the term.
 • Can do research for credit by taking ES 91r.
 • Can find a SEAS lab by attending the SEAS Research Labs Open House in Nov. and/or Feb.
 • During summer: Students regularly join SEAS labs with funding through PRISE, HCRP, HUCE.
 • Many students participate in research at other universities through NSF REU programs.

• What’s the difference between Bachelor of Arts (A.B.) and Bachelor of Science (S.B.)?
 • A.B.: 14-16 courses, more flexible requirements, can do research thesis, can do joint concentration
 • S.B.: 20 courses, engineering design courses, including individual capstone design project in ES100 (this is a required thesis), ABET-accredited (for professional licensure)

• How can I get involved in research?
 • Term-time: SEAS labs welcome undergraduates to work on research projects during the term.
 • Can do research for credit by taking ES 91r.
 • Can find a SEAS lab by attending the SEAS Research Labs Open House in Nov. and/or Feb.
 • During summer: Students regularly join SEAS labs with funding through PRISE, HCRP, HUCE.
 • Many students participate in research at other universities through NSF REU programs.

• Where do I start?
 • Start taking math (according to placement) and science in your first year.
 • Talk to a concentration advisor (ADUS) in any of our fields to chat about your options.
 • Take one of our introductory courses (see below).
 • Join a SEAS club (HCES, EWB, HURC, etc…)

Gateway Courses
Designed for first-years and sophomores

Electrical
ES 50 (Spr)

Mechanical
ES 51 (Fall, Spr)

Environmental
ES 6 (Spr)

Bio/biomedical
ES 53 (Fall)

Common course sequences for the first two years

<table>
<thead>
<tr>
<th>General Guidelines</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundational Math</td>
<td>Science or Gateway Engineering</td>
<td>Foundational Math</td>
</tr>
<tr>
<td>Engineering</td>
<td></td>
<td>Science or Gateway Engineering</td>
</tr>
</tbody>
</table>

Tips for all students:

• First year: At least two courses toward the concentration should be taken each term.
• Sophomore year: Generally, three courses toward the concentration should be taken each term.
• Foundational math, physics, science, and gateway courses generally count toward any of the engineering concentrations.
• Students have the flexibility to switch between programs through sophomore year.
• Foundational Math: Students should start math fall of their first year according to their placement (i.e., start at Math Ma, 1a, 1b, or 21a) and continue each semester until completion of the 21a/b series, which is required of all students. SB students starting in Math 1b and beyond will need to take additional advanced math courses beyond foundational math.
• Physics: Students should complete the physics series by spring of sophomore year. Typical sequences are:
 • Spring first year (PS 11a or Physics 15a) then sophomore year fall (Physics 15b or AP 50a). Fall sophomore year (Physics 15a or AP 50a) then spring sophomore year (Physics 15b or AP 50b).
• Life Science/Chemistry/other Science: Students should take the appropriate course relevant to their discipline (see chart below).

Bio/biomedical engineering

<table>
<thead>
<tr>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundational Math LS 1a/ES A</td>
<td>Foundational Math Physics (LS 1b)</td>
</tr>
</tbody>
</table>

Tips for Bio/BME students:

• Most Bio/BME students take ES 53 in sophomore fall, though some take the course in fall of first year.
• Physics is a co-req for ES 53. It is highly recommended to start physics in the first year.
• While not strictly required for the SB program, many premed SB students take LS 1b (beyond concentration requirements), but it need not be taken in the first year.

Environmental science and engineering

<table>
<thead>
<tr>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundational Math LS 1a/ES A</td>
<td>Foundational Math ESE 6 Consider: PS 11</td>
</tr>
</tbody>
</table>

Tips for ESE students:

• Most ESE students take ESE 6 in spring of first year.
• Students are highly encouraged to consider PS11 in spring of first year.

Mechanical engineering

<table>
<thead>
<tr>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundational Math ES 51, AM 10, or CS 50</td>
<td>Foundational Math</td>
</tr>
<tr>
<td>Engineering</td>
<td></td>
</tr>
</tbody>
</table>

Tips for MechE students:

• MechE students should complete ES 51 by sophomore fall.
• Almost all MechE students take ES 120 in sophomore spring.

Design and Validation of an Easily Machined CubeSat Structure
(ME SB)

JAZZMASTER: An Automated Accompaniment System for Jazz Music
(EE SB)

Evaluating cochlear implant mediated music perception with channel electrodogram mapping
(BME AB, Joint with Music)

Built a machine-learning based model to predict heavy metal contamination of groundwater at a national scale
(ESE SB)

Designed monocusp leaflets for right ventricular outflow tract reconstruction in infants
(BE SB)