
we obtain a modified nonlinear eigenvalue problem for pro-
prioception driven swimming (Supporting Information). To solve
this problem we start by inducing an initial instability assuming
ma = ða=2ÞsinðωτÞδk½x� with a= 1 at the leading edge. Then we
use a two-parameter continuation scheme to gradually reduce
a until it vanishes while increasing χ from zero to its designated
value. In Fig. 3 we see that self-propelled feedback-driven sol-
utions exist only in the proximity of the natural resonance fre-
quencies of the fish, and swimming performance is modulated by
both δ and χ. Thus, by controlling the strength χ or the delay
according to 0≤ωδ≤ π, the swimmer can vary its velocity u and
tail amplitude λ from zero to a maximum at ωδ= π=2 (Fig. 3A
and Supporting Information). This allows us to see that the pro-
prioceptive torque mf effectively acts on the body stiffness,
shifting the resonance peaks (Fig. 3A). Indeed, the feedback
strength χ may be regarded as a way to control the effective
negative muscle work (37). The class of solutions determined by
the parameters δ and χ produces nested performance surfaces
(Fig. 3 B and C), each of them associated with a resonance
peak, with multiple swimming regimes possible for a given pair δ,
χ. This suggests a control mechanism that allows propriocep-
tive swimmers to continuously switch to higher frequencies,
increasing their speed while maintaining their tail amplitude
approximately constant, as experimentally observed (1, 6). Al-
though we have assumed χ and δ to be constant, when they are
functions of space they can be used to reproduce specific swimming
patterns with complex gaits.
More generally, because locomotion is the product of the

simultaneous action of central pattern generator and pro-
prioception, we also solve Eqs. 15–17 with ma ≠ 0 and mf ≠ 0
(Eqs. 8 and 9). Our results indicate that the resonant char-
acter of optimal gaits persists, although the proprioceptive term
quantitatively modifies the output swimming velocity u by
sharpening or broadening the resonant peaks as a function of

the parameters δ, χ (Supporting Information). Our results show
that the simple form of Eq. 9 suffices to yield self-organized
propulsive gaits, hinting at robotics applications while also sug-
gestive of the role of local sensory feedback mechanisms for gait
evolution in developing organisms.

Discussion
Our simple 2D description for speed and gait selection in swim-
ming accounts for passive elasticity and hydrodynamic drag and
thrust, as well as coordinated muscular activity and proprioceptive
sensory feedback, and thus allows us to dissect the roles of the
physical and biological subsystems in a minimal self-consistent
setting. Our study thus complements recent large-scale simu-
lations by providing a mechanistic perspective on how a flexing
fish converts transverse oscillations to steady swimming but goes
beyond them by having the ability to provide comparative qual-
itative insights. Thus, for a prescribed traveling wave of muscular
torques our observations of quantized resonance peaks of speed
and efficiency have a simple interpretation: They are dictated
by the flexural deformation modes of the elastic body, thus
linking the instability mechanism for flag flutter (32) to reso-
nant swimming. Our theory also allows us to provide a quanti-
tative mechanistic explanation for the now-classic experimental
observations of Bainbridge (3). Finally, we show that a local
proprioceptive rule that links muscular torque to the local
shape with a temporal delay is sufficient to trigger a spontane-
ous elastic instability that leads to thrust production, without
the need for a central pattern generator, and is consistent with
the hypothesis of negative muscle work and modified stiffness
(37). Our study is thus a step in integrating neural dynamics,
mechanics, and flow in the context of locomotory behavior.
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Normalized Bending Stiffness and Active Torque
The swimmer’s dimensionless bending stiffness bðsÞ, as a func-
tion of its arc-length s, reads

bðsÞ= bbase +

 
bmag

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð1− sÞ3

�r !4
; [S1]

where the parameters bbase = 0:002 and bmag = 4 are chosen to
fit the normalized experimental data by McHenry et al. (1).
As normalization constant for the bending stiffness we used
B= 5:28 · 10−4 Nm2, which is the mean value of the measure-
ments reported in ref. 1.
The dimensionless function FðsÞ appearing in the definition of

the active torque ma is defined as

FðsÞ= fscale

 
fbase +

�
fmag

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð1− sÞ3

q ��4!
; [S2]

where parameters are set to fscale = 0:025, fbase = 0, and fmag = 4.
The functional form FðsÞ is proportional to the bending stiff-
ness bðsÞ, up to the constant bbase, to meet the constraint
maðx= 0;LÞ= 0. Furthermore, such expression also satisfies the
constraint ∂xmaðx= 0;LÞ= 0. The scaling factor fscale has been set
arbitrarily small to meet the small deformations assumption.
Normalized experimental data (1), bending stiffness bðsÞ, and

dimensionless function FðsÞ are reported in Fig. S1.

Derivation of Scaling Laws
Our model is naturally consistent with the universal scaling laws
of macroscopic swimming (2) Re∼ Sw4=3 for laminar swimming
and Re∼ Sw for turbulent swimming (with Sw= fAλL=ν being the
dimensionless swimming number).
In the laminar regime, balancing the propulsive term in Eq. 15

of the main text with the viscous boundary layer drag yields

ρI3 ∼
ρu3=2ffiffiffiffiffiffiffiffi
Reb

p : [S3]

Expressing the vertical displacement as h∼ eiωτΓðsÞλ, where ΓðsÞ
is an arbitrary, finite function of s, we obtain

I3 =
Z1
0

nðsÞ∂sh∂ττhds∼ λ2ω2: [S4]

Recalling that u=U=Ub, Reb = ð16e2Þ−1ðLUb=νÞ, ω= 2πfL=Ub
and λ=Aλ=L, we can rewrite Eq. S3 in its dimensional form as

ρ
A2
λ

L2

f 2L2

U2
b

∼ ρ

U3=2

U3=2
b

L1=2U1=2
b

ν1=2

; [S5]

which after rearranging yields

UL
ν

∼
�
fAλL
ν

�4=3

; [S6]

that is,

Re∼ Sw4=3; [S7]

consistent with ref. 2.
In the turbulent regime, balancing the propulsive term in Eq. 15

of the main text with the pressure drag yields

ρI3 ∼ ρu2I1: [S8]

As before, expressing the vertical displacement as h∼ eiωτΓðsÞλ,
where ΓðsÞ is an arbitrary, finite function of s, we obtain

I1 =
Z1
0

ð∂shÞ2kðsÞds∼ λ2: [S9]

Rewriting the balance Eq. S8 in dimensional notation leads to
the relation U=L∼ f first discovered empirically by Bainbridge
and provides a mechanistic explanation for it. By recalling that
in this swimming regime Aλ=L is approximately constant (1, 3)
(Fig. 2 B and C in the main text), Eq. S8 can be rewritten as

Re∼ Sw; [S10]

also consistent with ref. 2.

Active Swimming Without Proprioception
We report a quantitative comparison between simulations of
swimmers of different size (achieved by varying the bending
Reynolds number) and live fish measurements by Bainbridge (3)
in terms of the scaled active torque amplitude a. Simulations are
carried out assuming ρf = ρs = 1;000 kg/m3, ν= 10−6 m2/s, ρ= 300,
and a= 1. The bending Reynolds number is varied between
3 · 104 ≤Reb ≤ 4 · 104 to account for different swimmer sizes. The
swimming velocities and frequencies reported in Fig. 2E in
the main text correspond to the resonant peaks exhibited by
the model for an actuation wavenumber q= 2π.
The comparison of experimental data with simulations is

summarized in Fig. S4, and in Fig. S5 the corresponding Strouhal
numbers are reported, showing agreement with the experimental
observations by Taylor et al. (4) and Bainbridge (3). Linear fits
for simulations and experiments are reported in Table S1. By
increasing the activation amplitude, the slope αa of the linear fit
relative to simulations approaches the experimental values ob-
served for dace, trout, and goldfish when a ’ 4:75.

Instability Owing to Delayed Feedback
To show the presence of an oscillatory instability owing to the
delayed forcing we simplify the problem to eliminate the hy-
drodynamics by setting ρ= 0, b= 1 in Eq. 16. This then yields

∂2τhðτ; sÞ=−∂4s hðτ; sÞ− χ∂4s hðτ− δ; sÞ− β∂τhðτ; sÞ; [S11]

where we have added a linear damping β∂τh to mimic the effects
of hydrodynamics in a minimal setting. Without the forcing term
(the second term of the right-hand side) the beam relaxes to its
nonderformed configuration. The threshold for instability can
be captured by investigating solution of the form hðτ; sÞ= ~heiqseiωτ.
For small δ, we determine that the beam will oscillate with a fre-
quency given by ω2 ∼ q4 − 1=δ, as χ <−β=ðq4δÞ. This approach
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permits us to emphasize that a sufficiently large delay forcing
produces lateral undulations of the fish, and furthermore selects
a temporal frequency related to the resonant modes of the pas-
sive filament.

Purely Proprioceptively Driven Locomotion
In the case of proprioceptive swimmers, we solve Eqs. 15–17 of
the main text after setting the active torque ma = 0 and using the
following invariant form for the proprioceptive feedback torque:

mf ðs; τÞ= χ∂2s hðs; τ− δÞ; [S12]

where χ is the strength of the response to the stimulus ∂2s h and δ
is a temporal delay. By following the same approach as for the
active swimmer, we separate temporal and spatial variables by
studying solutions of the form hðs; τÞ= eiωτηðsÞ+ c:c:, where
ω=ΩL=Ub is the leading dimensionless active angular fre-
quency, ηðsÞ= θðsÞ+ iϕðsÞ is a complex variable, and the complex
conjugate c:c: ensures that h is real at all times. We, therefore,
obtain a nonlinear eigenvalue problem for the velocity u and the
gait hðs; τÞ of the proprioceptively driven fish that reads

1ffiffiffiffiffiffiffiffi
Reb

p ρu3=2 =− 2kðsÞC½γ�ρu2
Z1
0

h
ð∂sθÞ2 + ð∂sϕÞ2

i
ds

− 2kðsÞC½γ�ρωu
Z1
0

ð∂sϕθ−∂sθϕÞds

+ 2nðsÞρω2
Z1
0

ðθ∂sθ+ϕ∂sϕÞds

[S13]

−ω2ð1+ nðsÞρÞη=−
�
bðsÞ+ χbðsÞ

eiωδ

�
∂4s η− kðsÞu2C½γ�ρ∂sη

− 2∂sbðsÞ∂3s η−∂2s bðsÞ∂2s η−ikðsÞuC½γ�ωρη

+
∂2s ηsu3=2ρffiffiffiffiffiffiffiffi

Reb
p +

∂sηu3=2ρffiffiffiffiffiffiffiffi
Reb

p −
∂2s ηu3=2

ffiffi
s

p
ρffiffiffiffiffiffiffiffi

Reb
p

−
χ∂2s bðsÞ∂2s η

eiωδ
−
2χ∂sbðsÞ∂3s η

eiωδ
:

[S14]

Eq. S14 is system of eight ODEs subject to boundary conditions
∂2s ηð0; 1Þ= 0 and ∂3s ηð0; 1Þ= 0 and to the integral constraint of
Eq. S13.
To solve this nonlinear boundary value problem, we first let

ma = ða=2ÞsinðωτÞδk½x�, effectively injecting an oscillating torque
at the leading edge to induce an initial instability. Subsequently, we
gradually reduce the forcing amplitude a until it vanishes, while
increasing χ from zero to its designated value, implemented as a two

parameter continuation scheme. As can be seen in Fig. 2 in the
main text and in Fig. S2, self-propelled feedback-driven solutions
exist only in the proximity of the fish’s natural resonance frequen-
cies, whereas the swimming performance is itself modulated by
ωδ and χ.

Active Swimming with Proprioception
Because in the most general case biolocomotion is produced by
the simultaneous combination of central pattern generator and
proprioception, we investigate this scenario by solving Eqs. 15–17
where both ma ≠ 0 (Eq. 8 in the main text) and mf ≠ 0 (Eq. 9 in
the main text). By following the same approach previously
outlined, we obtain a nonlinear eigenvalue problem that reads

1ffiffiffiffiffiffiffiffi
Reb

p ρu3=2 =−2kðsÞC½γ�ρu2
Z1
0

h
ð∂sθÞ2 + ð∂sϕÞ2

i
ds

−2kðsÞC½γ�ρωu
Z1
0

ð∂sϕθ−∂sθϕÞds

+2nðsÞρω2
Z1
0

ðθ∂sθ+ϕ∂sϕÞds

[S15]

−ω2ð1+ nðsÞρÞη=−
�
bðsÞ+ χbðsÞ

eiωδ

�
∂4s η− kðsÞu2C½γ�ρ∂sη

− 2∂sbðsÞ∂3s η−∂2s bðsÞ∂2s η− ikðsÞuC½γ�ωρη

+
∂2s ηsu3=2ρffiffiffiffiffiffiffiffi

Reb
p +

∂sηu3=2ρffiffiffiffiffiffiffiffi
Reb

p −
∂2s ηu3=2

ffiffi
s

p
ρffiffiffiffiffiffiffiffi

Reb
p

−
χ∂2s bðsÞ∂2s η

eiωδ
−
2χ∂sbðsÞ∂3s η

eiωδ

+ ∂2s
�a
2i
FðsÞe−iqs

�
:

[S16]

Eq. S16 is a system of eight ODEs subject to the boundary con-
ditions ∂2s ηð0; 1Þ= 0 and ∂3s ηð0; 1Þ= 0 and the integral constraint
given by Eq. S15.
As shown in Fig. S3, the combined effect of central pattern

generator motor activation and proprioception qualitatively
preserves the resonant-like response seen previously when either
mf = 0 or ma = 0. Nevertheless, the proprioceptive term is found
to quantitatively modify the output swimming velocity u, either
sharpening or broadening the resonant peaks depending on the
values of the parameters δ and χ. However, the detailed interplay
between centralized muscle activation and proprioception is
a rich and substantially unexplored problem that lies beyond the
scope of this paper.
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Fig. S1. Comparison between normalized experimental data (1) (blue circles), bending stiffness bðsÞ (blue line), and dimensionless function FðsÞ (red line).

Fig. S2. Proprioceptive swimmer performance. A and B are, respectively, the locomotion velocity u and tail amplitude λ as functions of ωδ and χ.
The maximum velocity and tail amplitude are located at ωδ= π=2. The blue, green, and orange surfaces are associated, respectively, to the first, second, and
third resonance peak. All simulations are carried out by solving Eqs. 15–17 of the main text with ma = 0, mf ≠ 0 (Eq. 9 in the main text), ρf = ρs = 1,000 kg/m3,
ν= 10−6 m2/s, Reb =3:5 · 104, ρ=300.
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(a)

(c)

(b)

(d)

Fig. S3. Comparison between active swimmer with proprioception (orange line), active swimmer without proprioception (gray line), and the corresponding
passive sheet (red line). Simulations are carried out by solving Eqs. 15–17 in the main text with ma ≠ 0 (Eq. 8 in the main text), mf ≠ 0 (Eq. 9 in the main text),
ρf = ρs = 1,000 kg/m3, ν= 10−6 m2/s, Reb = 3:5 ·104, ρ= 300, a= 1, q= 2π, χ = 0:1 and varying the delay δ. (A) Active swimmer with proprioception and δ= π=ð2ω1Þ,
where ω1 = 0:59 is the first resonant frequency. (B) Active swimmer with proprioception and δ= π=ð2ω2Þ, where ω2 = 1:55 is the second resonant frequency.
(C) Active swimmer with proprioception and δ= π=ð2ω3Þ, where ω3 = 2:86 is the third resonant frequency. (D) Active swimmer with proprioception and
δ= π=ð2ω4Þ, where ω4 = 1 is an arbitrary non resonant frequency.

Fig. S4. Data relative to simulations carried out by solving Eqs. 15–17 in the main text with ma ≠ 0 (Eq. 8 in the main text), mf = 0, ρf = ρs = 1,000 kg/m3,
ν= 10−6 m2/s, ρ= 300, a= 4:75, q= 2π, and varying 3 ·104 ≤Reb ≤ 4 · 104.
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Fig. S5. Strouhal number. Red circles correspond to the experiments with trout, dace, and goldfish by Bainbridge (3). Blue squares correspond to the ex-
perimental observations by Taylor et al. (4) for both swimming and flying creatures. Black triangles correspond to simulations in the context of the present
work carried out as specified in Fig. S4, by solving Eqs. 15–17 in the main text with ma ≠ 0 (Eq. 8 in the main text), mf = 0, ρf = ρs = 1,000 kg/m3, ν= 10−6 m2/s,
ρ= 300, a= 4:75, q= 2π, and varying 3 · 104 ≤Reb ≤ 4 ·104.

Table S1. Comparison between simulations and experimental
data

Linear fit: U=L= αa Ω
2π+ βa αa βa

Dace 0.74 −1.02
Trout 0.73 −1.13
Goldfish 0.64 −0.20
Model, a=4:75 0.72 −0.12

Movie S1. Active swimmers characterized by a dimensionless forcing amplitude a = 1 and wavenumber q = 2π, Reb = 105, ρ = 10, and mf = 0. The quantities u,
ω, and λ represent, respectively, dimensionless velocity, forcing angular frequency, and tail amplitude. Midline motions in the vertical direction are rescaled
between 0.02 L and –0.02 L.

Movie S1
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Movie S2. Proprioceptive swimmers characterized by a dimensionless feedback strength χ = 0.12, Reb = 105, ρ = 10, and ma = 0. The quantities u, δ, and λ
represent, respectively, dimensionless velocity, feedback delay, and tail amplitude. Midline motions in the vertical direction are rescaled between 0.02 L and –0.02 L.

Movie S2
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