Federico Capasso

Federico Capasso

  • Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering

Profile

Professor Capasso's research cuts across several disciplines in basic physics, applied physics and engineering, which include optics, semiconductor physics, mesoscopic physics, solid-state electronics, optoelectronics and micromechanics.

A unifying theme of his research is the quantum design and study of new artificial materials and nanostructures with man-made electronic and optical properties, an approach that Professor Capasso pioneered and dubbed bandstructure engineering. These structures are grown by thin film deposition techniques such as Molecular Beam Epitaxy (MBE). These studies include both the investigation of quantum effects in lower dimensionality systems and the invention of photonic and electronic devices in which quantum effects on a mesoscopic scale (a few to ~ 100 nm) play a dominant role.

This multi-faceted research led Capasso and his collaborators to invent the quantum cascade (QC) laser, a fundamentally new light source whose emission wavelength can be designed to cover the entire spectrum from the mid to the far infrared by tailoring the active region layer thickness. You can read more about the development of the QC laser at Bell Labs and explore the technical details by viewing this slide show.

QC lasers are now commercially available and have wide ranging applications to molecular spectroscopy, chemical sensing and trace gas analysis (such as atmospheric chemistry, combustion diagnostics, breath analyzers in medicine, pollution monitoring and industrial process control, homeland security) and telecommunications.

At Harvard University Prof. Capasso's group has expanded QC laser research to new coherent light sources utilizing intracavity nonlinear optical effects. These include Raman injection lasers, lasers without inversion and difference frequency generators. Recently his group demonstrated the first Raman injection laser, a device based on resonant stimulated Raman scattering. This light source which currently operates in the mid-infrared, suitably scaled to the far-infrared,could lead to a widely tunable Terahertz source. Similarly a source of TeraHertz radiation based on intracavity frequency difference generation would have unprecedented tunability.

Capasso's group is also studying the ultrafast dynamics of QC lasers. Modelocking in these devices is poorly understood since the gain recovery time is expected to be much shorter than the cavity roundtrip time, so that present theories of modelocking cannot apply to QC lasers.

In bandstructure engineering one takes advantage of the control of the boundary conditions of the electron wavefunctions to design bottom-up the basic quantum mechanical features of materials (energy levels, optical matrix elements, scattering times, etc). One can play a similar game with phonons and photons and Professor Capasso's research has recently started to move into new directions by asking questions such as: can one make a phonon laser by analogy with the Quantum Cascade Laser?

Recently, the Harvard team collaborated with groups at Caltech and Bell Labs to develop a Quantum Cascade Photonic Crystal Surface Emitting Laser (QCPCSELS) that combines electronic and photonic band structure engineering to achieve vertical emission from the surface. The latter is perforated by a honeycomb of holes that form the photonic crystal. This work recently led Capasso to join a multiuniversity center involving Caltech, University of California at San Diego and Harvard. The technical focus of this effort will be on optofluidics, an exciting new research area based on the use of microfluidic devices to control optical processes, and which is expected to result in a new generation of small-scale, highly adaptable, and innovative optical devices. In particular Capasso's group effort is on optofluidic QC lasers in which holes are defined within the laser by focused ion beam or reactive ion etching to permit microfluidic delivery to the cavity. In this way not only one could control the emission properties of the laser but one hopes to also build a new class of on chip biochem/sensors in which the fluid delivers the analytes to the optical cavity.

In another research direction Capasso's group is also exploring new mid-infrared light sources based on surface plasmon and on the enhanced transmission of light through a periodic array of subwavelength holes.

Prof. Capasso has recently teamed up with Prof. John Joannopoulos and his group at MIT to investigate the radiation forces between microptical components such as microsphers and nano-optical fibers. They have found that under certain circumstances an attractive force can develop rather than the conventional radiation pressure force which is repulsive.

Another area of Capasso's research is the investigation of quantum electrodynamical phenomena such as the Casimir effect (the attractive force between uncharged parallel metallic plates. This effect is the manifestation of quantum mechanical vacuum fluctuations, i.e. the zero point energy of the electromagnetic field. Their spectrum can be altered by changing the boundary conditions of the electromagnetic field. This engineering of vacuum fluctuations can be used to design Casimir forces for specific applications.

Leveraging on earlier work work Capasso and his group will focus on designing geometries and investigating materials that will alter in nontrivial ways the Casimir force, including the investigation of repulsive Casimir force. A new experiment in Capasso's lab is searching for the predicted mechanical torque associated with vacuum fluctuations when two dielectric plates made of optically anisotropic materials are brought in close proximity.

Professor Capasso's goal is to eventually expand his research to the so-called dynamical Casimir effect. This elusive quantum electrodynamical phenomenon, predicted by Davies, Fulling and Schwinger in the 1970s, consists in the generation of non-thermal light out of vacuum by surfaces in a state of non-uniform acceleration (e.g. a vibrating microwave cavity). Its observation would be of truly fundamental significance. A related problem is the radiation from neutral molecules moving above a grating recently studied theoretically by Capasso and his collaborators.

A tutorial account of Professor Capasso's research on nanostructures has appeared in a book on materials research by Ivan Amato ("Stuff: the materials the world is made of", Basic Books, New York, NY, 1997). A tutorial description of Quantum Cascade Laser and quantum semiconductor structures is in the article "Diminishing Dimensions" of a special issue of Scientific American, entitled the Solid-State Century, 1997-1998.

Contact Information

Office:205A Pierce Hall
Email:capasso@seas.harvard.edu
Office Phone:(617) 384-7611
Lab Name:Capasso Group
Lab Room:121
Lab Phone:(617) 495-5909
Assistant:Stacia Zatsiorsky
Assistant Office:Pierce Hall 206B
Assistant Phone:6174953256

Primary Teaching Area

Applied Physics

Positions & Employment

Harvard School of Engineering and Applied Sciences

  • January 2003-Present: Robert Wallace Professor of Applied Physics; Vinton Hayes Senior Research Fellow in Electrical Engineering

Institute for Quantum Studies, Texas A&M University

  • November 2009-Present: Adjunct Researcher

Bell Laboratories, Lucent Technologies

  • 2000-2002: Vice President of Physical Research

Bell Laboratories, Lucent Technologies

  • 1997-2000: Department Head, Semiconductor Physics Research

Bell Laboratories, Lucent Technologies

  • 1987-1997: Department Head Quantum Phenomena and Device Research

Bell Laboratories

  • 1984-1987: Distinguished Member of Technical Staff

Bell Laboratories

  • 1977–1984: Member of Technical Staff, Bell Laboratories

Bell Laboratories

  • 1976–1977: Visiting Scientist

Fondazione Bordoni, Rome, Italy

  • 1974–1976: Research Physicist

 

Other Experience & Professional Membership

  • Fellow, The Institute of Physics (UK), 1999
  • Fellow, American Academy of Arts and Sciences, 1998
  • Honorary Member, of the Franklin Institute, 1997
  • Member, National Academy of Sciences, 1995
  • Member, National Academy of Engineering, 1995
  • Fellow, American Association for the Advancement of Science, 1992
  • Fellow, International Society for Optical Engineering (SPIE), 1991
  • Fellow, Optical Society of America, 1989
  •  Fellow, Institute of Electrical and Electronic Engineers, 1987
  • Fellow, American Physical Society, 1986

 

Honors

  • Recognized as a Laser Luminary by SPIE as part of the Laserfest celebrations for the 50th anniversary of the first laser, 2010
  • Berthold Leibinger Zukunft Prize (Future prize), 2010
  • King Faisal International Prize for Science, 2005
  • Gold Medal of the President of Italy for meritorious achievement in science, 2005
  • Commendatore of the Italian Republic, 2004

  • Edison Medal, Institute of Electrical and Electronic Engineers (IEEE), 2004
  • Arhur Schawlow Prize in Laser Science, American Physical Society, 2004
  • Tommasoni & Chisesi Prize for Outstanding Achievements in Physics, 2004
  • Honorary Doctorate in Electrical Engineering, University of Bologna, Italy, 2003

  • Goff Smith Prize and Lecture, University of Michigan, 2003
  • Duddell Medal and Prize of The Institute of Physics (London, UK), 2002
  • Robert Wood Prize of the Optical Society of America, 2001
  • Silver Seal of the University of Bari, 2001

  • Willis E. Lamb Medal for Laser Physics and Quantum Optics, 2000
  • NASA Group Achievement Award, 2000
  • Alessandro Volta Memorial Medal, University of Pavia, Italy, 1999
  •  IEEE/Laser & Electrooptics Society W. Streifer Award for Scientific   Achievement, 1998
  • Rank Prize in Optoelectronics (UK), 1998
  • Capitolium Prize from the Mayor of Rome, Italy, 1998
  •  Wetherill Medal of the Franklin Institute, 1997
  •  Bell Laboratories Fellow Award, 1997
  • Materials Research Society Medal, 1995
  • Moet Hennessy·Louis Vuitton “Leonardo da Vinci” Award of Excellence (France), 1995
  • Newcomb Cleveland Prize of the American Association for the Advancement of Science, 1995
  • Electronics Letters Prize of the Institute of Electrical Engineers (London, UK), 1995
  • Heinrich Welker Memorial Medal (Germany) and International Compound Semiconductors Symposium Award, 1994
  • The New York Academy of Sciences Award, 1993
  • IEEE David Sarnoff Award in Electronics, 1991
  • Bell Laboratories Distinguished Member of Technical Staff Award, 1984